基因芯片的组成及工作原理

利用杂交的原理,即DNA根据碱基配对原则,在常温下和中性条件下形成双链DNA分子,但在高温、碱性或有机溶剂等条件下,双螺旋之间的氢键断裂,双螺旋解开,形成单链分子(称为DNA变性,DNA变性时的温度称Tm值)。变性的DNA黏度下降,沉降速度增加,浮力上升,紫外吸收增加。当消除变性条件后,变性DNA两条互补链可以重新结合,恢复原来的双螺旋结构,这一过程称为复性。复性后的DNA,其理化性质能得到恢复。

利用DNA这一重要理化特性,将两个以上不同来源的多核苷酸链之间由于互补性而使它们在复性过程中形成异源杂合分子的过程称为杂交(hydridization)。杂交体中的分子不是来自同一个二聚体分子。由于温度比其他变性方法更容易控制,当双链的核酸在高于其变性温度(Tm值)时,解螺旋成单链分子;当温度降到低于Tm值时,单链分子根据碱基的配对原则再度复性成双链分子。因此通常利用温度的变化使DNA在变性和复性的过程中进行核酸杂交。

核酸分子单链之间有互补的碱基顺序。通过碱基对之间非共价键的形成即出现稳定的双链区,这是核酸分子杂交的基础。杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链彼此之间只要有一定程度的互补/顷序就可以形成杂交双链,分子杂交可在DNA与DNA、RNA与RNA或RNA与DNA的两条单链之间。利用分子杂交这一特性,先将杂交链中的一条用某种可以检测的方式进行标记,再与另一种核酸(待测样本)进行分子杂交,然后对待测核酸序列进行定性或定量检测,分析待测样本中是否存在该基因或该基因的表达有无变化。通常称被检测的核酸为靶序列(target),用于探测靶DNA的互补序列被称为探针(probe)。在传统杂交技术如DNA印迹(Southern bloting)和RNA印迹(Northern bloting)中通常标记探针,被称为正向杂交方法;而基因芯片通常采用反向杂交方法,即将多个探针分子点在芯片上,样本的核酸靶标进行标记后与芯片进行杂交。这样的优点是同时可以研究成千上万的靶标甚至全基因组作为靶序列。

具体地讲,利用核酸的杂交原理,基因芯片可以实现两大类的检测:RNA水平的大规模基因表达谱的研究和检测DNA的结构及组成。